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ABSTRACT

Session-aware knowledge tracing tries to predict learners’ performance, by splitting learners’ sequences
into sessions and modeling their learning within and between sessions. However, there still is a lack of
comprehensive understanding of the learning processes and session-form learning patterns. Moreover, the
knowledge state shifts between sessions at the knowledge concept level remain unexplored. To this end, we
conduct in-depth data analysis to understand learners’ learning processes and session-form learning patterns.
Then, we perform an empirical study validating knowledge state shifts at the knowledge concept level in real-
world educational datasets. Subsequently, a method of Enhancing Learning Process Modeling for Session-aware
Knowledge Tracing, ELPKT, is proposed to capture the knowledge state shifts at the knowledge concept level
and track knowledge state across sessions. Specifically, the ELPKT models learners’ learning process as intra-
sessions and inter-sessions from the knowledge concept level. In intra-sessions, fine-grained behaviors are used
to capture learners’ short-term knowledge states accurately. In inter-sessions, learners’ knowledge retentions
and decays are modeled to capture the knowledge state shift between sessions. Extensive experiments on
four real-world datasets demonstrate that ELPKT outperforms the existing methods in learners’ performance
prediction. Additionally, ELPKT shows its ability to capture the knowledge state shifts between sessions and

provide interpretability for the predicted results.

1. Introduction

Knowledge tracing (KT) is a fundamental and critical task in intel-
ligent educational technology, which has already been broadly applied
in numerous educational scenarios [1]. It aims to assess learners’
knowledge proficiency based on their historical learning sequences and
predict their performance in future exercises. The learners’ performance
predicted by KT technology provides timely feedback on their knowl-
edge levels and helps optimize their next learning plans. There are
many representative works in the literature, especially deep learning-
based KT works, which have achieved state-of-the-art results on most
KT benchmark datasets [2]. In existing KT works, most consider various
factors related to learners’ performance, e.g., questions [3-6], indi-
vidual differences [4,7,8], temporal effects [5,9-13], and fine-grained
behaviors [13], to improve models’ prediction ability. Furthermore,
the latest studies [14,15] focus on the accuracy of learners’ knowledge
states generated by KT models. While the above efforts drive progress
in knowledge tracing, they all treat learners’ interaction sequences
as continuous sequences, ignoring that interactions within learners’
sequences are non-uniformly distributed. That is, the time intervals be-
tween adjacent interactions within learners’ sequences vary greatly. To
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illustrate this phenomenon clearly, as shown in Fig. 1, we statistically
analyze the distribution of time intervals between adjacent interactions
in four educational datasets (please refer to Section 4.1.1 for the details
of datasets).

As seen from Figs. 1(a) and 1(b), the time intervals for most adjacent
interactions are small, and only a few of them are larger. For example,
the 91.4% of time intervals in the ASSIST2012 dataset are less than
20 min. The phenomenon implies that: (1) learners’ online learning is in
the form of sessions, where they answer several questions continuously.
(2) The time intervals of adjacent interactions within sessions are
small, and the time intervals between sessions are larger. As such,
learners’ session-form learning patterns should be considered to trace
their knowledge state in the learning process.

Recently, researchers have focused on the above issues and pro-
posed session-aware KT methods [16,17], introducing a new paradigm
for KT. The session-aware knowledge tracing predicts learners’ perfor-
mance with the hierarchical structure and relationship between learn-
ers’ sessions. Specifically, they split learners’ sequences into sessions
and model two sequences: interactions within sessions and sequences
of different sessions.
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Fig. 1. The interval statistics in the four real-world datasets.

While they have achieved promising results, there are still some
open challenges in existing session-aware KT works: (1) There is a lack
of deep analysis and understanding of learners’ learning process and
their session-form learning patterns. (2) When considering session-form
learning patterns to trace learners’ knowledge state, the knowledge
state shifts at the knowledge concepts level remain unexplored.

To address the above challenges, we analyze learners’ learning
processes and their session-form learning patterns from several aspects.
Subsequently, we explore the knowledge state shifts between sessions
at the knowledge concept level, which aims to uncover that learners’
responses to the same knowledge may differ between sessions resulting
from too large time intervals. We further propose a method of Enhanc-
ing Learning Process Modeling for Session-aware Knowledge Tracing,
ELPKT, which aims to capture the knowledge state shifts from the
knowledge concepts level and track learners’ knowledge state across
sessions. The main contributions of this article are summarized as
follows:

(1) We conduct in-depth data analysis to understand learners’ learn-
ing processes and their session-form learning patterns. Furthermore,
we undertake an empirical study to validate the knowledge state shifts
between sessions from the knowledge concepts level in four real-world
educational datasets (Section 4).

(2) We propose Enhancing Learning Process Modeling for Session-
aware Knowledge Tracing, ELPKT, which models the learning pro-
cess as intra- and inter-session from the knowledge concept level.
In intra-session, learners’ fine-grained behaviors within sessions are
used to capture their short-term knowledge states accurately. In inter-
session, the knowledge retentions and decays are modeled to capture
the knowledge state shift between sessions (Section 5).

(3) We conduct extensive experiments on four real-world datasets,
comparing the proposed ELPKT to nine advanced baselines. The exper-
imental results demonstrate that ELPKT outperforms the existing meth-
ods in predicting learners’ performance. Moreover, they also validate
that ELPKT can capture the knowledge state shifts between sessions and
provide interpretability for the predicted results (Section 6).

The article is organized as follows: Section 2 reviews related work.
Sections 3 and 4 describe the problem formulation and data analysis,
supporting the design of our model. In Section 5, the proposed ELPKT
model is introduced in detail. Section 6 evaluates the proposed model
through extensive experiments and discusses the experiment results.
Finally, Section 7 concludes this article.

2. Related work

This section reviews the literature on knowledge tracing (KT) to
highlight the urgent issues about KT and our research motivations. In
this article, we mainly focus on the knowledge state shifts resulting
from temporal effects in KT, hence we discuss two categories of KT
works (i.e., KT works not considering temporal effects and KT works
considering temporal effects) and our differences.
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2.1. KT works not considering temporal effects

These KT models employ various techniques and learning-related
factors to trace learners’ knowledge state. For instance, DKT [18] first
utilizes RNNs to model learners’ sequences, and uses the hidden state
to represent overall knowledge levels. In subsequent works, DKT+ [19]
addresses the reconstruction error and the waveform transition in
the DKT. DKVMN [20] and SKVMN [21] have built on DKT by en-
hancing the knowledge concepts modeling with memory matrices. In
SAKT [22], the self-attention mechanism is integrated to address the
shortcomings of DKT and DKVMN. The above classic methods consider
knowledge concepts and responses in learners’ sequences for knowl-
edge tracing modeling. Some works gradually consider the features
besides knowledge concepts to model knowledge state evolution. For
example, Zhang et al. [23] improve the DKT by incorporating more fea-
tures (e.g., exercise tags, response times). Other models like IEKT [7],
DIMKT [3], and interpretable KT models [4,6] focus on evaluating
cognitive abilities, exercise difficulty, and individual skill mastery for
better knowledge level assessment. Additionally, Recent studies [14,15]
focus on the accuracy of learners’ knowledge states generated by KT
models and explore stable knowledge tracing.

Most KT works [3,14,18-21] are RNN-based, with a lower calcula-
tion cost due to their fewer parameters. Because the gradient vanishes
or explodes in RNN models, RNN-based KT models generally model
the short learners’ sequences truncated by long sequences, which may
cause them to ignore the temporal effects in tracing dynamic knowledge
states. Some recent works [15,24,25] introduce Transformers, which
be applied efficiently in long-sequence modeling. However, the large
number of parameters in Transformer-based models increases the calcu-
lation cost. Considering that there are fewer interactions within sessions
and RNN is a common KT model structure with the advantage of fewer
parameters, the proposed ELPKT model still selects RNN as the base
model to track learners’ knowledge state on each knowledge concept.

2.2. KT works considering temporal effects

Education psychologists [26-28] proposed that the temporal factor
may lead to learners’ knowledge forgetting. Therefore, some works
consider temporal effects on tracing knowledge state in a unified way.
Few other studies consider learners’ session-form learning patterns and
suggest that large time intervals may cause knowledge state shifts
compared to small time intervals. Then, we further categorized the
former as KT works modeling temporal effects in a unified way and
the latter as session-aware KT works.

2.2.1. KT works modeling temporal effects in a unified way

These works mainly model temporal effects on knowledge forgetting
and the correlation between interactions in a unified way to trace the
knowledge state.

Modeling temporal effects on learners’ knowledge forgetting. In these
studies, researchers address the phenomenon of knowledge forgetting
in educational contexts through various innovative approaches. They
leverage forgetting factors [29], time-based features [9,11,30,31] to
capture and understand knowledge forgetting in learning processes.
Studies, such as LPKT [11] and LFKT [32], consider how the time
intervals between interactions impact both learning gain and forgetting.
Im et al. [33] propose FoLiBi, a model reflecting forgetting behaviors in
linear bias. Abdelrahman and Wang [31] explore two critical forgetting
features and integrate forget gating mechanism into attention memory
structure to capture forgetting. Additionally, LBKT [13] models learn-
ers’ forgetting by combining the time interval and fine-grained learning
behavior.

Modeling temporal effects on correlations between interactions. These
works simulate the decay of the correlation between interactions over
time, which is implicit forgetting modeling. In these works, researchers
explore diverse methods to understand and model temporal dynamics
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Table 1
Notations and Descriptions.
Notations Descriptions
U, E, The set of learners and exercises.
C The set of knowledge concepts (KCs).
LP The complete learning process.
(0] The time interval between adjacent sessions.
E, The embedding matrix of exercises.
E, The embedding matrix of correctness labels.
D The embedding matrix of exercises’ difficulty.
e, e The exercise and its embedding.
r,r The correctness label and its embedding.
A, The embedding matrix of answer times.
A, The embedding matrix of attempt count.
H, The embedding matrix of hint count.
at, at The answer time and its embedding.
ac, ac The attempt count and its embedding.
he, he The hint count and its embedding.

(0] The relation matrix of KCs and exercises.

q The knowledge concept vector of exercise.

d, d The difficulty level and its embedding.

L The learning interaction embedding.

B The fine-grained behavior embedding.

The short-term and long-term knowledge states.
F, The vector of knowledge practice frequency.

in educational data, including cross-effects decay [12,34], the dimin-
ishing importance of interactions [5,10,35,36], and the impact of re-
cent exercises [37], to enhance predictive accuracy and insights into
learners’ performance in their learning process.

The above works propose several representative methods of model-
ing temporal effects to trace learners’ knowledge states. However, they
neglect the learners’ session-form learning patterns and the knowledge
state shift resulting from large time intervals, which may lead to KT
models failing to track learners’ knowledge states promptly.

2.2.2. Session-aware knowledge tracing

Researchers focus on the knowledge state shifts and propose session-
aware knowledge tracing. Ke et al. [17] introduce HiTSKT, a method
that splits sessions when the time interval between interactions exceeds
10 h. They use an interaction encoder that captures the relationship
between interactions to model intra-session, and a session encoder that
captures the knowledge state shift between sessions from the overall
knowledge level to model inter-session. Shen et al. [16] introduce QKT,
which splits quizzes by quiz ID. Then, they employ the RNN variant
that captures the knowledge relationship between interactions to model
intra-quiz and combine the RNN variant and self-attentive encoder to
capture the knowledge state shift between quizzes from the overall
knowledge level and model inter-quiz.

While the above works focused on learners’ knowledge shifts be-
tween sessions, there still is a lack of deep analysis and understanding
of the learning process and session-form learning patterns. In addi-
tion, the knowledge state shifts between sessions at the fine-grained
knowledge concepts level remain unexplored.

Our Differences. To address these issues, we first conduct a com-
prehensive data analysis to understand learners’ learning process and
session-form learning patterns. Then, we explore the knowledge state
shifts between sessions from the knowledge concepts level through em-
pirical study. To effectively model learners’ complete learning process,
we consider the fine-grained learning behaviors to model intra-session
and capture the knowledge state shifts between sessions from the
knowledge concepts level to model inter-session.

3. Problem formulation
This section first explains the terms used in this article. Then, the

studied KT problem is formulated. For clarity, the notations utilized in
this article are summarized in Table 1.
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3.1. Term definition

Learning Session. A learning session S is defined as a continuous
interaction sequence online. Considering the time intervals between
adjacent interactions vary in learners’ sequences, we split learners’
sequences into sessions. The method of splitting sessions is introduced
in Section 4.3.

Offline Time. Offline time O,_, , denotes the time intervals between
the adjacent p— 1th and pth session, where the learning interactions are
unobservable.

Learning Process. Based on learners’ session-form learning pattern,
the learning process is defined as consisting of online intra-sessions and
offline inter-sessions. A complete learning process LP is represented
as LP = {S',0,,.58%....871,0,,,.57,0,,,,}), where SP denotes
all interactions in the pth session and O, ., denotes the offline time
between the pth and p + 1th session.

3.2. Problem definition

In an online learning system, there are I learners and J exercises
covering M knowledge concepts (KCs), and learner u; € U, exercise
e; € E; and the knowledge concept ¢,, € C. The relation between
exercises and KCs is generally represented by a matrix O, where O €
R/*M The jth row of Q is the knowledge concept vector about exercise
e;. Each element of Q is either O or 1, indicating whether exercise e;
contains KC ¢, (Qjm = 1) or not (Qjm =0).

A learner’s interactions in the pth session is denoted as S? =
{sf s sg, ...,s7}), where s” = (¢f,?, b") is the learner’s interaction at time
step ¢ in this session. ef’ is the exercise, and rf is the correctness label
(1 for correct, O for incorrect). b = (ar? ") is the learner’s fine-
grained behaviors about solving ef, where ar! is the answer time, ac”
is the attempt count and hcf is the hint count.

We define the enhancing learning process modeling for session-
aware knowledge tracing problem as follows: Given a learner’s learning
process, LP = {§',0,,,5%...,8"71,0,,,.57,0,,.,}, where S” =
[er, b0, ..., (el rf,b))], and O, ,,; is the offline time between the pth
and p + 1th session, our goal is to predict learners’ performance in the
next p+ 1 session, by monitoring learners’ dynamic knowledge states on
each knowledge concept in the pth session and capture the knowledge

state shifts in offline time O

»
,ac, ,he

p.p+1*

4. Data analysis and processing

This section first introduces the preliminaries: the datasets and the
correlation analysis method. Then, we conduct comprehensive data
analysis to understand learners’ learning processes and session-form
learning patterns. Additionally, we split sessions and preprocess data
based on the data analysis. Finally, we perform an empirical study to
validate the knowledge state shifts between sessions from the knowl-
edge concept level in real-world education datasets, which motivates
our model design.

4.1. Preliminary

4.1.1. Dataset
The datasets used in our data analysis and experiments are from the
Intelligent Tutoring Systems (e.g., ASSIST2012 and ASSIST2017) and
MOOC platforms (e.g., MOOC746997 and MOOC770738).
ASSIST2012' and ASSIST20172 dataset. The two datasets are de-
rived from the online tutoring system ASSISTments.> They record the

1 https://sites.google.com/site/ASSISTdata/home/2012-13-school-data-
with-affect

2 https://sites.google.com/view/ASSISTdatamining/dataset

3 https://new.assistments.org/
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interaction data of learners’ answering math exercises during the 2012—
2013 and 2004-2007 academic years, respectively, in ASSISTments.
They both include learners’ IDs, exercises, skills, and learning behavior,
i.e., answer time, hint counts, and attempt counts.

MOOC746997 and MOOC770738." They are two course learning
datasets from MOOCRadar [38]. The raw data comes from XuetangX,®
which is a well-known MOOCs platform. The two datasets respectively
record the learners’ interactions in the courses “Fundamentals of Ana-
log Electronics” and “Data Structure” in 2020. They include learners’
IDs, exercises, knowledge concepts, and behavior, e.g., submit time and
submit count.

4.1.2. Correlation analysis method

Conditional mutual information (CMI) is introduced to quantify the
correlation of learners’ responses to the same KCs and analyze the
knowledge state shifts between sessions. The CMI represents the degree
of correlation between two random variables under a given restrictive
condition [12]. The larger the CMI, the higher the correlation between
the two random variables. It can be used to quantify the correlation
of learners’ responses to the same KCs within and between sessions.
A lower correlation of responses to the same KCs suggests potential
knowledge state shifts. Therefore, the knowledge state shifts between
sessions can be uncovered by utilizing CML

Given a specific condition ¢, we first identify all interaction pairs
(x;,x;) in the learners’ sequence that satisfies the condition c¢. Then, we
treat the interaction pairs’ responses (r;,7;) as random variables. The
conditional mutual information (CMI) is calculated as follows:
P(r;,r;)

_ 1
P(r)P(r) W

CMIGrir)= Y ) P@r.r)log

ri€(0,1) r;€(0.1)
for the CMI of learners’ responses to the same KCs within sessions
(or between sessions), the restrictive condition ¢ can be considered
as adjacent interactions involving the same KCs within sessions (or
interaction pairs involving the same KCs between sessions). The joint
probability P(ry,r)) and marginal probability P(r;), P(r;) can be ob-
tained by calculating the occurrence frequency of interaction pairs that
satisfy the restrictive condition c.

4.2. Data analysis

To deeply understand the learning processes and session-form learn-
ing patterns, we undertake an in-depth data analysis. Learners’ learning
processes contain multiple sessions and offline time between sessions.
Considering the distribution of time intervals in Fig. 1 and there are
lacking session boundary identifiers in the datasets, we design a set of
thresholds 6 (0 € {20,30,40,50,600}) to split sessions in four datasets.
Our analysis delves into three key aspects of the sessions and learning
processes: interaction uniformity, session duration, and offline time.

4 https://github.com/THU-KEG/MOOC-Radar
5 https://www.xuetangx.com/
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4.2.1. Interactions uniformity

To analyze the interaction uniformity within sessions, referring
to [39], we calculate the mean standard deviation of intervals between
adjacent interactions within sessions, as shown in Fig. 2. The smaller
mean standard deviation indicates a more uniform interaction distri-
bution within sessions. From Fig. 2, we can observe that sessions split
by different interval thresholds exhibit different interactions uni-
formity. Moreover, larger interval thresholds result in decreased
interaction uniformity.

4.2.2. Session duration and offline time statistics

To explore learners’ time allocation in online and offline learning,
we analyze the distribution of session duration and offline time under
sessions split by different thresholds, as shown in Fig. 3. Session dura-
tion refers to the continuous learning duration in a session, and offline
time denotes the time interval between adjacent sessions. We perform
log transformations on session duration and offline time. In Fig. 3, we
have the following findings:

Learners tend to spend a short time on continuous online
learning. As seen in Fig. 3, regardless of the time interval threshold,
the durations of most sessions are around 40 min in all datasets. For
example, in ASSIST2012, the durations of 75% sessions (between the
minimum and Q3 of boxes) are less than 2° (i.e.,, 32) minutes. It
suggests that most learners spend less time learning online continu-
ously. However, by carefully analyzing four datasets, we observed that
sessions divided by too large intervals (e.g., 600 min) exhibit over 10%
exceptions with extended durations, which does not align with learners’
short online sessions.

Learners’ offline time is much longer than their session dura-
tion. In Fig. 3, regardless of the threshold, the time in 75% of offline
(between the Q1 and maximum of boxes) is greater than 20 h in
ASSIST2012, and it is even greater than eight days in ASSIST2017.
When smaller interval thresholds split sessions, the time in 50% of
offlines (between the minimum and median) is smaller than 20 h
in MOOC746997, and the time in 75% of offline is smaller than
20 h in MOOC770738. This indicates that learners have substantial
offline periods where learning activities are not recorded. Additionally,
learners’ offline time on the MOOC platform is shorter than in the online
tutoring system (ASSISTments). This phenomenon could be attributed
to frequent updates of course materials on MOOC platforms, which
encourage learners to engage regularly to keep their learning progress.
In contrast, the ASSISTments may focus more on personalized learning
guidance than learning resource updates.

Sessions splitting by too large time intervals results in longer
session duration and offline time. This phenomenon may lead to two
issues: (1) It blurs the boundary between online and offline learning, as
learners may engage in offline activities within sessions, complicating intra-
session modeling. (2) Too long offline periods between sessions may hinder
the model’s ability to capture timely shifts in learners’ knowledge states.

4.3. Data processing

We first set an interval threshold to split sessions based on the
observations from the above data analysis, i.e., sessions split by too
large thresholds may lead to non-uniform interactions within sessions
and too long offline periods between sessions. Studies on learning and
attention [40] indicate that the human attention span for learning
ranges from 20 to 40 min. Considering the learning process analysis
and practical educational applications, we target thresholds that make
the duration of over 90% of sessions after splitting to match learners’
short online learning patterns and human attention span for learning.
As such, we set 30 min as the default interval threshold to split sessions.
We also test the performance of our model that runs in sessions split
by different interval thresholds in Section 6.2.4.

For splitting sessions, we first remove records containing missing
fields and sort the interactions in ascending chronological order in four
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Table 2

Statistics of all datasets.
DataSet ASSIST2012 ASSIST2017 MOOC746997 MOOC770738
learners 20200 1709 1022 873
Exercises 52624 3162 550 99
Knowledge concepts 265 102 265 80
Interactions 2,600,869 942,816 97,218 46,369
Sessions 233,757 13,873 8102 10,788
Interactions per learners * 31/ 70/ 152 239/ 443/ 743 22/ 47/ 132 25/ 56/ 87
Sessions per learners* 3/ 6/ 14 5/ 8/ 10 2/ 4/ 10 5/ 11/ 19
Interactions per session * 4/ 8/ 14 31/ 53/ 86 5/ 8/ 14 2/3/5

= indicates the data property’s first quartile, median, and third quartile, respectively.

datasets. Then, based on the default interval threshold 9 (i.e., 30 min),
we split learners’ sequences into sessions. Specifically, if the time inter-
val between two adjacent interactions is larger than 6, we divide them
into two adjacent sessions. For all datasets, we remove the sessions
with fewer than two interactions and ensure learners have at least
two sessions to guarantee enough sessions for intra- and inter-session
modeling. The details of the processed datasets are shown in Table 2.

4.4. Empirical study: Knowledge states shifts between sessions

To illustrate the effect of large time intervals on learners’ knowledge
states, we further validate the knowledge state shifts between sessions
from the knowledge concept level in real-world education datasets
through empirical study. According to the processed datasets and cor-
relation analysis method in Section 4.1.2, we separately calculate the
conditional mutual information (CMI) of learners’ responses to the same
KCs within and between sessions.

We present the CMI of learners’ responses to the same KCs within
and between sessions on the top-10 KCs with the highest frequency in
the ASSIST2012, as shown in Figs. 4(a) and 4(b). In Fig. 4, the skill
id represents the top-10 KCs in the ASSIST2012. Each cell is the CMI
of learners’ responses to the same KCs. The darker the color of the
cell, the larger the CMI. The lower CMI indicates a lower correlation
of responses to the same KCs, which implies potential knowledge state
shifts. By comparing and analyzing Figs. 4(a) and 4(b), we draw the
following important findings:

The knowledge state evolves dynamically within and between
sessions. It suggests that both the interactions within sessions and the
offline time between adjacent sessions can result in the knowledge state
evolving constantly.

The knowledge state shifts are more likely to occur between
sessions. As can be found in Figs. 4(a) and 4(b), the CMI of learners’
responses to the same KCs between sessions is always lower than that
within sessions. It illustrates that learners’ performance on the same
knowledge concepts tends to be different in adjacent sessions, which
denotes the knowledge state shifts between sessions.

The findings validate the existence of knowledge state shifts be-
tween sessions in real-world educational datasets. It further motivates
us to capture the knowledge state shifts between sessions by inter-
session modeling.
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Fig. 4. The CMI of learners’ responses to the same KCs within and between sessions.

5. Model

Based on the processed data and findings in Section 4, this sec-
tion models the learning process as multiple intra- and inter-session
from the knowledge concept level. First, the embedding method is
described. Then, in intra-session modeling, learners’ fine-grained be-
haviors within sessions are used to capture the short-term knowledge
state accurately. In inter-sessions, the knowledge retentions and decays
are modeled to explicitly capture the knowledge state shift between
sessions. With intra- and inter-session modeling, ELPKT tracks learners’
knowledge state during the entire learning process. The architecture of
the proposed ELPKT model is depicted in Fig. 5.
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Fig. 5. Overview of the ELPKT model. It contains multiple intra-session modeling and inter-session modeling. In intra-session modeling, learners’ short-term knowledge is updated
at each time step within sessions. In the figure, we show the process of updating learners’ short-term knowledge at rth time step within the pth session in intra-session modeling.

Once the pth session finishes, the short-term knowledge state Hlf is the input of inter-session modeling. After modeling inter-session in O,

initial state of the p + 1th session.

5.1. Embedding

We consider the learning-related factors, such as exercises, knowl-
edge concepts, and the learners’ behaviors (i.e., answer times, hint
counts, and attempt counts). To better understand the proposed ELPKT
model, we briefly introduce the embeddings of the following elements.

Exercise Embedding. The exercise embedding matrix E; store all
the exercises embeddings in the dataset, where E; € R/>*%. J denotes
the number of exercises in the dataset, and d, represents its dimension.
Exercise ¢/ that a learner solves at the rth time step in the pth session
can be represented as a vector e/ € Ré%.

Response Embedding. The matrix E, € R>% encodes the two
responses (correct or incorrect), d, denotes its dimension. rf € R% is
the response vector about e/ .

The Knowledge Concept Vector. We use the matrix Q to record the
relation between exercises and knowledge concepts (KCs). Q € R/*M |
where M is the number of KCs in the dataset. The knowledge concept
vector of exercise e/ can be represented as 7 € RM.

Exercise Difficulty Embedding. Considering that exercise diffi-
culty affects learners’ knowledge mastery and is unlabeled, we calculate
the exercises’ error rates ¢(¢) and map them to 10 levels to denote
the exercise difficulty d(e). A higher error rate indicates greater dif-

N(’

ficulty. The error rate of an exercise ¢(e) = w, refers to
the proportion of learners who answered the exercise ¢ incorrectly on
their first attempt, where N, is the number of learners who answered
exercise e, r;, is the response (0 or 1). Referring to [4] which sets 10
difficulty levels based on learners’ responses, we similarly map the error
rate of exercises into 10 difficulty levels, i.e., d(e) = |¢(e) x 10]. The
difficulty matrix D € R!%%¢: encodes the 10 difficulty levels, d, denotes
its dimension. The difficulty embedding of exercise ¢’ is denoted as
d’ e R%.

Interaction Embedding. We use a fully connected layer to deeply
integrate the exercise embedding, difficulty embedding, and response
embedding to obtain a basic interaction embedding. The interaction
embedding I7 about solving exercise ef is represented as follows:

I” = ReLUW [’ @ d” & r' + b)) €2

where W, € RnX(@xdr+di) and b, € R are trainable parameters, and
@ represents the concatenation operation.

Behavior Embedding. Fine-grained learning behaviors can reflect
learners’ knowledge states. For example, when learners grasp the
knowledge concepts well, they may not frequently submit answers
and use the online hint function. We represent fine-grained learning

the knowledge state HS is the

P+l PHLO

behaviors (i.e., answer times, attempt counts, and hint counts) as
embedding.

— Time Embedding. Following the approach proposed by [11], the
embedding matrix A, is used to represent discretized answer
times which are measured in seconds. A, € R, where d,
represents the number of discretized answer times and d, repre-
sents the dimension. ar” is the answer time for solving exercise e/
and is represented as the vector atf’ € R,

- Attempt Count Embedding. The embedding matrix A, represents
the learners’ attempt counts for the same exercise. A, € R%cXdr,
where d,. represents the number of attempt counts, and d, rep-
resents the dimension. ac represents the attempt counts for the
learner solving exercise ¢/ and is represented as the vector ac’ €
R,

- Hint Count Embedding. Similarly, the embedding matrix H_ de-
notes the hint counts that the learner requests from the system for
the same exercise. H, € R%:c*4 where d,. denotes the number
of hints and d, denotes the dimension. Ac’ is hint counts request
from system during learner solving exercise ¢’ and is denoted to
the vector hcf € R%.

To capture the effects of learning behaviors on the learning process,
we also use a fully connected layer to integrate fine-grained behaviors
(response time, hints count, attempts count) as behavior embedding.
The behavior embedding B! about answering exercise e/ is denoted as
follows:

B = ReLU(W ,[at’ @ hc? @ ac?] + by) 3)

where B? represents the learners’ behavior embedding when answering
exercise ef. at?, he? and ac? represent the embeddings of the response
time, hint counts, and attempt counts, respectively. W, € Rém*(2d,+dy)
and b, € R are trainable parameters.

Knowledge State Embedding. Following existing work [11,13],
for each learner, we use the knowledge state embedding matrix H
to store and update their knowledge states, H € RM*m. M is the
number of knowledge concepts. Each row of matrix H represents the
learners’ mastery level on the corresponding knowledge concept. In this
article, we introduce HS and H® to represent learners’ short-term and
long-term knowledge states, respectively.

5.2. Modeling intra-session

For intra-session with observable interactions, fine-grained learning
behaviors about interactions are used to model learners’ short-term
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knowledge states. After finishing intra-session modeling in the pth
session, the learners’ short-term knowledge state H ;v is the input of
inter-session modeling in offline time O, ;.
5.2.1. Knowledge acquisition modeling

Learning acquisition refers to the differences in abilities and per-
sonal development exhibited by the same learner at two different
times [41]. Existing work [13] suggests that learning behaviors have
quite complex effects on learners’ learning process, we model learners’
knowledge acquisition by considering fine-grained learning behaviors.

Knowledge acquisition. While a learner answers exercise e, fine-
grained learning behaviors may be generated, such as submitting an-
swers quickly, constantly requesting hints from the system, or attempt-
ing frequently. These behaviors indirectly indicate learners’ knowledge
proficiency on exercise ef. For example, if a learner frequently requests
hints from the system or quickly submits answers, it may indicate a lack
of engaging learning. The phenomena also reflect a lower knowledge
proficiency. Therefore, it is necessary to consider the impact of guessing
and engagement in modeling learners’ knowledge acquisition. Based
on the above analysis, we propose two gate mechanisms to model
learners’ fine-grained learning behaviors (i.e., answer time atf , number
of hints requested hc?, and attempt counts ac!’) as indicators of guess
and engage when answering exercise e’.

G(e?) = sigmiod(W ,[I? @ BY] +b,) )]

E(e!) = sigmoid(W ,[1’ & B’ +b,) )

where G(ef ) represents learners’ guess and E(ef ) represents the learn-
ers’ engagement level when answering exercise e/. I’ and B! are
the interaction embedding and behavior embedding about e?. W, e
Rén*2n, W, € R are trainable weight matrices. b, € R% and
b, € R? are trainable bias terms.

Considering learners’ guess and engagement while answering the
exercise, the learning acquisition after answering exercise e/ is calcu-
lated as follows:

LA? = relu(W ,[I" ® k"1 +b,) ®)
W =la-Geon |eEeon ) ™

where LA? represents the learning acquisition after the learners an-
swer exercise e”. h/tp_\1 represents the usage of knowledge states during
the learners’ guess and engagement. © represents the element-wise
product. W, and b, are trainable parameters, where W, € R%nX3dn,
b,eR¥. h  =q/-H S ._, represents the knowledge proficiency related
to solve exercise ef . q, is the knowledge concept vector about exercise
/. H f_ ., s the learners’ knowledge proficiency at step ¢ — 1 of session
SP.

Knowledge level increment quantification. The knowledge level incre-
ment on all knowledge is quantified based on the learning acquisition
LA? after learners’ answering exercise e’. We multiply the knowledge
concept vector g’ of exercise e/ with the learning acquisition LA! to
quantify the knowledge level increment on all knowledge as follows:

LI’=q" LAY ®)

5.2.2. Knowledge forgetting modeling

While learners acquire new knowledge, they also forget previously
learned knowledge. Prior work [13] suggests that knowledge forgetting
is influenced by time and learners’ behaviors. If learners frequently
guess answers while answering exercises, they will not recall or apply
their knowledge. Consequently, their knowledge proficiency will de-
crease with time. Therefore, integrating learners’ previous knowledge
states and the guess and engagement levels while answering the current
exercise ¢/, knowledge forgetting is calculated as follows:

—

LF] = sigmoid(W ([Hy _ & I] ®h}_1+by) Q)
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where LF? represents the forgetting on the learners’ previous knowl-
edge state H f ., after answering exercise /. W, and b, are trainable
parameters, where W ; € R*>#n, b, € Rin.

5.2.3. Knowledge update modeling

When each interaction within the pth session is finished, learners’
knowledge state is updated accordingly. Based on learners’ knowledge
level increment and the knowledge forgetting after answering exercise
e/, the current knowledge state H If , is updated as follows:

S _ 14 14 A
HPJ—LIt+(1—LFt)O Hp"_] (10)

After all interactions within the pth session are finished, learners’
knowledge state at the last step of the pth session H I‘f 1as, TEDTESEN their
short-term knowledge state in the pth session. For convenience, we use

s s
H? to replace H Dlast®

5.3. Modeling inter-session

In offline time, knowledge retention and decay are important factors
affecting knowledge state shifts. For inter-session modeling, we model
the knowledge retentions and decays to capture the knowledge state
shifts between sessions from the knowledge concept level. Meanwhile,
the frequency of knowledge practice is used to control the retention
rate of knowledge and filter poorly mastered knowledge.

5.3.1. Short-to-long knowledge retention

According to education psychology theories, part of learners’ short-
term learning memory gradually consolidates into their long-term
memory, where the retention time is very long [42]. In inter-sessions
without observable interactions, we model learners’ short-to-long
knowledge state retention to predict learners’ performance in the
next session. If learners have a high retention of knowledge state,
the knowledge state shifts between sessions will be less. Therefore,
they will have a high probability of correctly answering the relevant
exercises in the next session.

In the offline time O, ,,, between the pth and p+1th sessions, a GRU
cell is used to consolidate the short-term knowledge state H ;f into long-
term knowledge H{;. Educational psychology theories also indicate
that repeated retrieval can strengthen memory retention [28,43,44].
Therefore, the frequency of knowledge practice in the pth session is
used to control the retention rate of short-term knowledge state in
consolidating. The process is as follows:

}1\5 = sigmoid(Wch+bC)OH‘pg 11
R= sigmoid(w,[Ef ® H{;_l] +b,) 12)
Z= sigmoid(Wz[HNf ©H | 1+b.) 13)
HT = tanh(W,[HS & (RO HL )] + b) (14)
H:=ZoH: +(1-2)0HE 1s)

L . . . .
where H o 1s the long-term knowledge state during offline time O, ;.

H f and H f are the short-term knowledge states acquired from the
pth session. F, is the vector of knowledge practice frequency in the
pth session. H 571 is learners’ long-term knowledge states during offline

time O,_; ,. H 5 represents the candidate long-term knowledge state.
R and Z denote the forget gate and update gate, respectively. W, €
RMXM’ Wr = RdeZd"‘, Wz c RdeZd"‘, Wh c Rd"lXZd'ﬂ, bc c RM,

b, € Rin, b, € R and b, € R are trainable parameters.
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5.3.2. Short-term knowledge decay

Learners’ short-term learning memory is an intermediate state be-
tween immediate and long-term memory, which decays over time [45].
In inter-sessions, we also model the short-term knowledge decay H f
in offline time O, ,,, to predict learners’ performance in the next
session. The frequency of knowledge practice has an effect on short-
term knowledge decay [28,43]. The higher the frequency of knowledge
practice, the less knowledge decay in the short-term knowledge state.

In offline time O, ,,,, the exponential decay function is used to
simulate the decay of learners’ short-term knowledge state H, which
has been widely used in knowledge tracing and has proven effective
for modeling memory decay. Additionally, learners’ knowledge prac-
tice frequency within the pth session controls the decay rate of the
short-term knowledge state over time. The calculation is as follows:
H f = exp(— ‘O

p,n+1’(WSFq))on e

where HS denotes the short-term knowledge state after decay over

the offline time |0, H‘l. W, € RMXM s trainable parameters. After
calculating the knowledge retention and decay in offline time O, ,,,
the fused short- and long-term knowledge state is the initial knowledge

state H 5“ o of the next p + Ith session. The calculation is as follows,
and a € [0, 1] is a hyper-parameter.

s _ gL s
Hp+1’0—aHp +(1_a)Hp a7)

5.4. Performance prediction

In this part, we demonstrate how to use the learners’ knowledge
state H f, to predict their performance on the next exercise ef’+1. In
online learning, when learners solve exercise ef 1 Wwith the difficulty

level dtp +1» we infer the learners’ performance on exercise ef’ ., as follows:

ny = sigmoid(Wo[ep @ d’

1+1 +1 @ hf] +b,) (18)
where yf 1 is the predicted probability of learners’ correctly answering
exercise ef+|, which ranges from 0 to 1. A = qu -H i , represents
learners’ knowledge levels related to exercise e, . W, € Rén*(itdrtdn)
and b, € RY are trainable parameters. To train all the parameters
in ELPKT, we exploit the cross-entropy loss between the predicted
response y and the true response r as the objective function, which will

be minimized in the training process:

P T
L:—EZ(rflogyf+(l—rf)log(l—yf)) (19)

p=2t=1

6. Experiment

In this section, we conduct extensive experiments to evaluate the
proposed ELPKT model, aiming to answer the following essential re-
search questions:

RQ1: How does our proposed ELPKT model perform against the
state-of-the-art baseline models?

RQ2: How do the components (i.e., forgetting, inter-session mod-
eling, the components of inter-session modeling, and the fusion of
short-term and long-term knowledge) within ELPKT and interval
thresholds for splitting sessions affect the model performance?
RQ3: Can our proposed ELPKT model capture the knowledge
state shifts between sessions and how does it perform in fine-
grained behavior modeling as well as providing interpretability
for learners’ performance prediction?

To answer these questions, we first provide the details of the ex-
perimental setup, including the data processing, training details, eval-
uation, and baseline methods. Afterward, we present the KT models’
performance to answer question RQ1. Then, we conduct an abla-
tion study and parameter sensitivity analysis to answer question RQ2.
Furthermore, we adopt a case study to answer questions RQ3.
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6.1. Experimental setup

6.1.1. Training details

To facilitate training, we formulate learners’ complete learning
processes with P sessions and P — 1 offline time, where each session
contains 7 interactions. To approximate learners’ authentic session-
based learning experiences, we set P and T to the third quartile of the
session counts and the session length in datasets to represent learners’
learning processes. Specifically, as shown in Table 2, for ASSIST2012,
P and T are set to 14 and 14; For ASSIST2017, P and T are 10 and 86;
For MOOC746997, P and T are 10 and 14; For MOOC770738, P and T
are 19 and 5. For the sessions with lengths greater than 7', we divided
them into multiple sessions with fixed-length T'. For learners with more
sessions than P, we sliced their sessions based on the fixed count P. For
sessions whose length is smaller than T or learners’ session counts less
than P, we padded them with zero vectors.

We initialized all parameters using a uniform distribution [46]. All
parameters were learned during the training process. We set the mini-
batch size to 16 in our experiments. The parameters d,, d,,, and d, were
set to 128, 128, and 50, respectively. The hyper-parameter « for short-
and long-term knowledge fusion was set to 0.3. The initial learning
rate was set to 0.001 and decayed after each epoch. The optimizer is
Adam [47]. We apply the early stopping strategy to cut off the training
when the AUC on the validation sets does not grow in 5 consecutive
epochs. All baselines were carefully tuned to achieve optimal perfor-
mance to ensure fairness. All experiments were conducted on a Linux
server with an RTX 4090 GPU. We conducted five independent runs
and reported the average results for all models.

6.1.2. Evaluation

To comprehensively evaluate the performance of all models, we
conducted experiments on four benchmark datasets. For all models, we
performed 5-fold cross-validation on all datasets. For each fold, 20%
of the learners were used as the test set, and the remaining 80% were
divided into 80% for training and 20% for validation. The model with
the best performance on the validation set was used to evaluate the
test set. We report the average results of five runs on the test set.
Area under curve (AUC), accuracy (ACC) and Root mean squared
error (RMSE) are the evaluation metrics that are commonly used in
the KT task. Specifically, AUC and ACC are adopted to measure the
model’s effectiveness from the classification perspective. RMSE is used
to quantify the distance between the predicted and actual performance.

6.2. Experimental results and discussion

6.2.1. Baselines

To evaluate the effectiveness of the ELPKT model, we compare
it with nine representative KT models. For better presentation, we
summarize the properties of the baselines and the ELPKT model in
Table 3 and divide the baselines into three categories as follows:

(1) The representative KT works that do not consider temporal effects
on learners’ knowledge state.

— DKT [18] uses Recurrent Neural Networks (RNNs) to model
learners’ knowledge states at each time step.

— DKT+ [19] addresses the reconstruction error and the waveform
transition in the DKT model.

— DKVMN [20] is a memory-augmented KT model. It utilizes the
relationships of latent concepts to output the learners’ knowledge
mastery levels.

(2) The works modeling temporal effects in a unified way.

— LPKT [11] considers the answering time and time interval of
learners’ interactions to calculate learning gain and forgetting.
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Table 3

Properties of all baselines and our ELPKT model.
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Method Session-aware Time interval Fine-grained behavior Knowledge state representation
DKT - - - A single vector
DKT+ - - - A single vector
DKVMN - - - Knowledge state matrix
AKT - v - A single vector
HawkesKT - v - Intensity value
LPKT - v Answer time Knowledge state matrix
LBKT - v Answer time, hint count, attempt count Knowledge state matrix
QKT v - - A single vector
HiTSKT v v - A single vector
ELPKT v v Answer time, hint count, attempt count Knowledge state matrix
Table 4
The average results comparing ELPKT with the representative KT models over all datasets.

ASSIST2012 ASSIST2017 MOOC746997 MOOC770738
Methods

AUC ACC RMSE AUC ACC RMSE AUC ACC RMSE AUC ACC RMSE
DKT 0.7054  0.7234  0.4359  0.698 0.6855  0.4483  0.7896  0.7614  0.4285 0.7826  0.867 0.3645
DKT+ 0.7135  0.7289  0.4337  0.682 0.6943  0.4392 0.7901  0.7689  0.4157 0.8013  0.8491  0.3325
DKVMN 0.7204 0.6933 0.4280 0.6853 0.7062 0.4263 0.7573 0.7634 0.431 0.8233 0.8476 0.3559
I'mprove 8.8% 4.1% 5.2% 18.7% 7.9% 5.7% 3% 0.8% 5.2% 1.5% 2.7% 6.6%
AKT 0.7641 0.7505 0.4123 0.7624 0.7135 0.4326 0.8053 0.7679 0.3999 0.8284 0.8741 0.3175
HawkesKT ~ 0.7571  0.7470  0.4153  0.7052  0.6868  0.4531  0.7934 0.7616  0.4061 0.8257  0.8694  0.3154
LPKT 0.7734  0.7549  0.4951  0.7962 0.7371  0.4828  0.8055  0.769 0.4806  0.829 0.8709  0.3569
LBKT 0.7748 0.7561 0.4097 0.7958 0.7387 0.4192 0.8103 0.7736 0.3959  0.8312 0.8712 0.3087
I'mprove 1.2% 0.4% 0.9% 4% 3.2% 4.2% 0.4% 0.2% 0.5% 0.5% —-0.3% —-0.6%
QKT 0.7127  0.7276  0.4280  0.7105 0.6887  0.4509  0.8053  0.7665 0.4 0.7712  0.8540  0.3353
HiTSKT 0.7546  0.7442  0.5058 0.7817  0.7224  0.5269  0.8059 0.7677 0.4819 0.8319 0.8637  0.3687
HiTSKT" 0.7566  0.7467  0.5033  0.7901  0.7294  0.5202 0.8087 0.7714 0.4675 0.8324 0.8661  0.3614
ELPKT 0.7844 0.7591 0.4059 0.8285 0.7620 0.4018 0.8138 0.7750 0.394 0.8357 0.8719  0.3106
I'mprove 3.9% 2% 5.2% 6% 5.5% 10.9% 1% 1% 1.5% 0.5% 0.9% 7.4%

The best result in each column is in bold, and the best result in each category of models is underlined. HiTSKT and HiTSKT' denote the
experimental results based on sessions split by 10 h and 30 min, respectively. Improve represents the improvement of ELPKT over the best

baselines of each category.

— AKT [10] summarizes learners’ historical performances using a
monotonic attention mechanism.

— HawkesKT [12] models the temporal cross-effects on skill mas-
tery by point processes.

— LBKT [13] explores the learners’ behavior effects on the learning
gain and forgetting.

(3) The session-aware knowledge tracing works.

— QKT [16] splits quizzes by quiz ID and models the intra- and
the inter-quiz to trace knowledge states. Considering the quizzes
split by quiz IDs may have inconsistent data distribution from the
sessions split by time interval, we run it in the same experimental
setup as ours.

— HIiTSKT [17] includes an interaction-level encoder and a session-
level encoder. It splits learners’ sequences into sessions when the
time interval between adjacent interactions is greater than 10 h.

— HiTSKT' [17] run in the sessions that are split by our default
interval threshold (i.e., 30 min), with the same experimental
setup as ours.

6.2.2. Performance prediction

To answer the research question RQ1, this experiment compares the
performance of the proposed ELPKT model with nine representative
KT baseline models on four datasets. Table 4 reports the average
experiment results of five runs. From Table 4, we have the following
findings:

ELPKT outperforms the representative baselines that do not
consider temporal effects. Compared with the best baseline (i.e., the
best among DKT, DKT+, and DKVMN on AUC, ACC, and RMSE, respec-
tively) without considering temporal effects, ELPKT achieved better
learners’ performance prediction in four datasets. The results show that

ELPKT, considering the temporal effect, can effectively track learners’
knowledge states.

ELPKT outperforms the baselines that model temporal effects
in a unified way. Compared with these baselines, ELPKT performed
better in the ASSIST2012, ASSIST2017, and MOOC746997 datasets on
three metrics. The results validate that modeling large and small time
intervals in different ways benefits in predicting learners’ performance.

For MOOC770738, our ELPKT performs slightly worse than AKT and
LBKT on ACC and RMSE. This may be because the MOOC datasets
lack detailed behavior features, e.g., hint counts and repeated attempt
counts, which affect model performance. Besides, in MOOC770738,
there are fewer interactions in most learners’ sessions (i.e., the number
of interactions in most sessions is 5, as listed in Table 2), which
may hinder the ELPKT model from roundly capturing knowledge state
within sessions.

ELPKT outperforms the representative session-aware KT base-
line models. Compared with HiTSKT and QKT, ELPKT improved sig-
nificantly in the four datasets. It validates that considering fine-grained
behavior and the knowledge state shifts between sessions at the knowl-
edge concept level benefits tracing learners’ knowledge state. More-
over, the performance of the HiTSKT' running in sessions split by the
small interval threshold (i.e., 30 min) was better than HiTSKT running
in sessions split by 10 h. It demonstrates that sessions split by too
large thresholds may hinder the prediction ability of session-aware KT
models.

Other important features contribute to KT modeling. In Table 4,
we observe that the baselines considering temporal effects (e.g., AKT,
HawkesKT, LPKT, HiTSKT, LBKT) and fine-grained behavior effect
(e.g., LBKT) present better performance than those that do not consider
temporal effects. Moreover, LBKT, which considers both temporal and
behavioral effects, performs best on almost all baselines. This proves
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Table 5
Setting differences between ELPKT and its variant methods.
Line Methods intra-session inter-session
forgetting retention frequency on retention decay frequency on decay
MO ELPKT v v v v v
M1 w/o forget - v v v v
M2 w/o offline v - - - -
M3 Ww/o retention v - - v v
M4 w/o Feq retention v v - v v
M5 w/o decay v v v - -
M6 w/o Feq_decay v v v v -
Table 6
PerformancecComparison between ELPKT and its variant methods (under %).
. ASSIST2012 ASSIST2017 MOOC746997 MOOC770738
Line  Methods
AUC ACC RMSE AUC ACC RMSE AUC ACC RMSE AUC ACC RMSE
MO ELPKT 78.44 79.51 40.59 82.85 76.2 40.18 81.38 77.50 39.4 83.57 87.19 31.06
M1 w/o forget 77.1 75.0 41.18 80.46 7453 41.49 81.02 77.39 39.47 822 87.05 31.48
M2 w/o offline 7691 74.85 41.73 79.83 7404 41.68 80.35 77.13 39.62 81.5 86.59  31.57
M3 w/0 retention 78.25 75.78 40.69 79.97 74.29 4147 81.23 77.21 39.53 83.16 86.86 31.12
M4 w/o Feq retention 7831 7585 40.6 81.39 7519 40.99 81.36 77.34 39.49 83.48 8692 31.1
M5 w/o decay 7838 75.87 40.63 8237 7579 40.44 81.29 7739 3943 8349 87.11 31.15
M6 w/o Feq_decay 78.4 75.88 40.61 82.48 7593 40.39 81.33 7745 3941 8352 87.15 31.09
BO w/o offline 69.96 71.98 4339 6877 66.96 46.12 79.56 75.46 4099 7550 8529  33.98
Bl w/o offline 7466 73.69 51.30 7697 71.29 5358 79.91 76.39 47.01 81.21 86.14 36.71
BO and Bl are the session-aware KT baselines (i.e., QKT [16] and HiTSKT [17]) that remove inter-session modeling.
Table 7
The overall and partial performance comparisons of ELPKT with representative session-aware KT baselines.
ASSIST2012 ASSIST2017 MOOC746997 MOOC770738
Methods
AUC ACC RMSE AUC ACC RMSE AUC ACC RMSE AUC ACC RMSE
ELPKT 0.7844 0.7591 0.4059 0.8285 0.7620 0.4018 0.8138 0.7750 0.394 0.8357 0.8719 0.3106
QKT 0.7127 0.7276 0.4280 0.7105 0.6887 0.4509 0.8053 0.7665 0.40 0.7712 0.8540 0.3353
HiTSKT 0.7566 0.7467 0.5033 0.7901 0.7294 0.5202 0.8087 0.7714 0.4675 0.8324 0.8661 0.3614
Improvel 10.06% 4.33% 5.16% 16.60% 10.64% 10.89% 1.06% 1.11% 1.50% 8.36% 2.10% 7.37%
Improve2 3.67% 1.66% 19.35% 4.86% 4.47% 22.76% 0.63% 0.47% 15.72% 0.40% 0.67% 14.06%
M2 0.7691 0.7485 0.4173 0.7983 0.7404 0.4168 0.8035 0.7713 0.3962 0.815 0.8659 0.3157
BO 0.6996 0.7198 0.4339 0.6877 0.6696 0.4612 0.7956 0.7546 0.4099 0.7550 0.8529 0.3398
Bl 0.7466 0.7369 0.5130 0.7697 0.7129 0.5358 0.7991 0.7639 0.4701 0.8121 0.8614 0.3671
Improve3 9.93% 3.99% 3.83% 16.08% 10.57% 9.63% 0.99% 2.21% 3.34% 7.95% 1.52% 7.09%
I'mprove4 3.01% 1.57% 18.65% 3.72% 3.86% 22.21% 0.55% 0.97% 15.72% 0.36% 0.52% 14.0%

M2, B0, and Bl are the ELPKT, QKT [16] and HiTSKT [17] that remove inter-session modeling respectively. Improvel and Improve2 denote the improvement of the proposed
ELPKT over QKT and HiTSKT. Improve3 and I'mprove4 denote the improvement of M2 over BO and Bl.

that temporal information and fine-grained behavior are crucial for
knowledge tracing.

All models performed better on the MOOC datasets than on AS-
SISTments datasets. It may be because most learners’ online learning
is regular and periodic in the MOOC datasets (i.e., most learners’ offline
time in MOOC datasets is much shorter than that in ASSISTments
datasets, as seen in Fig. 3), which benefits to modeling their learning
progress and knowledge state evolution.

6.2.3. Ablation studies

To answer the research question RQ2, we design 6 variants of
the ELPKT model and the variants of QKT [16] and HiTSKT [17] for
ablation studies as follows:

w/o forget removes the component that models knowledge
forgetting in intra-sessions.

w/o offline removes the component that models inter-sessions.
It is similar to most KT works that do not split learners’ sequences
into sessions.

w/o retention removes the short-to-long knowledge retention in
inter-session modeling.

w/o Feq_ retention neglects the effect of knowledge practice
frequency on knowledge retention.
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- w/o decay removes the decay of the short-term knowledge state
over time in inter-session modeling.

- w/o Feq_decay neglects the effect of knowledge practice fre-
quency on short-term knowledge decay.

Notably, both HiTSKT [17] and our ELPKT split sessions by the time
interval, while QKT [16] splits quizzes (sessions) by quiz ID, which may
have inconsistent data distribution with sessions divided by the time
interval. To ensure fair comparisons, we run the variants of ELPKT,
QKT, and HiTSKT at the same experiment settings, i.e., the variants
of three models are run in the sessions split by the default threshold
(30 min). For the input length (i.e., session counts and interaction
counts within sessions) of the variants of the three models, we use the
same training details as reported in Section 6.1.1.

Table 5 summarizes the difference in the settings of these variant
methods, and Table 6 shows the performance comparison between
them and ELPKT. Table 7 reports the performance of the session-aware
KT models. From Table 6, we have the following findings:

Considering knowledge forgetting is essential for intra-session
modeling. Compared with M0, M1 that removes knowledge forget-
ting in intra-session modeling significantly degrades performance. The
result shows that knowledge forgetting occurs within sessions when
knowledge is not applied.



C. Huang et al.

Knowledge-Based Systems 309 (2025) 112740

HO——O—O\O—O—M—o—o\( 0.875 I ————0—0—0—0—
0.83 1 o0l Pl
0.850 —>— ASSIST2012 7 p—o—o—0—0—0—0—0—0—0—
0.82 1 ASSIST2017
0.825 4 —0O— M0OC746997 w 0.38 1
Y 0.81 [8) —)— M00C770738 «»
ERe > ASSIST2012 2 = 0.36 1 ~>— ASSIST2012
< 0.800 - 4
0.80 1 ASSIST2017 ASSIST2017
-0~ MOOC746997 0.775 4—0 o—0 o 0.34 4 —O- MOOC746997
~)— M00C770738 ’ —)— M00C770738
0791 PR S 0.32 1
LD 0.750 4 . 0 O —O——
0.78 T T — T T T T T — T T T — T T T T L
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 040506 07080910 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
a o4 [*§

(a) AUC

(b) ACC

(c) RMSE

Fig. 6. ELPKT performances in the different fusion ratios of short-term and long-term knowledge a.

Considering offline inter-session benefits enhancing learning
process modeling. Compared with M0, M2 that removes inter-session
modeling exhibits a significant decline in performance. The result
demonstrates that considering the effects of large intervals on the
knowledge state helps capture the knowledge state shifts during the
learning process.

Knowledge retention and decay are important for inter-session
modeling. Compared with M0, M3 that removes knowledge retention
in inter-session modeling shows a decline. It suggests that learners’
knowledge will be consolidated after a learning session. In addition,
compared with M0, M5 that neglects knowledge decay in inter-session
modeling also shows a decrease. It validates that learners’ short-term
knowledge will decay over time. Compared with M3, M5 drops a bit
less. The reason may be that knowledge retention modeling implicitly
involves knowledge filtering, where only well-mastered knowledge is
retained for long-term knowledge. It leads to the effect of short-term
knowledge decay being smaller than knowledge retention.

The frequency of knowledge practice affects both knowledge
retention and decay. Compared with M0, M4 and M6, which neglect
the effect of knowledge practice frequency on knowledge retention
and knowledge decay, respectively, show a slight decrease. The results
suggest that the frequency of knowledge practice positively contributes
to knowledge tracing.

Comparison of the intra-session modeling in session-aware KT
models. Compared with B0 and B1 (i.e., QKT and HiTSKT that remove
inter-session modeling) in Table 6, M2 that removing the intra-session
modeling in ELPKT outperforms both. It illustrates that considering
learners’ fine-grained learning behavior in intra-session modeling is
more beneficial to accurately capture learners’ knowledge states than
only considering the relationship between interactions.

Comparison of the inter-session modeling in session-aware KT
models. Given the inter-session modeling is built on the intra-session
modeling, we evaluate the performance of inter-session modeling in
three methods (i.e., ELPKT, QKT, and HiTSKT) by calculating the over-
all and partial performance improvement, as shown in Table 7. From
Table 7, we find that: (1) Our ELPKT outperforms the representative
session-aware KT baseline models, i.e., QKT and HiTSKT; (2) When
only modeling intra-session in these three models, ELPKT also demon-
strates its superior performance. (3) The overall improvement of ELPKT
over QKT, and HiTSKT (i.e., Improvel and I'mprove2) is higher than
that of only modeling intra-sessions (i.e., Improve3 and Improve4), in
the datasets except MOOC746997. On MOOC746997, while Improvel
and I'mprove2 show slightly lower ACC compared to I'mprove3 and
Improved, they outperform Improve3 and I'mprove4 in AUC which offers
a more comprehensive evaluation of the model performance than ACC.
As such, the results validate the effectiveness of inter-session modeling
and capturing the knowledge state shifts between sessions in ELPKT.

6.2.4. Parameter sensitivity analysis

We conduct parameter sensitivity analysis further to answer the
research question RQ2. It contains the study of the fusion of short-
and long-term knowledge states and the interval threshold setting for
splitting sessions.
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The fusion of short-term and long-term knowledge states. We
run ELPKT with the parameter a € {0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8, 0.9,
1}, which is the fusion ratio of short-term and long-term knowledge as
shown in Eq. (17), to determine the most favorable « for optimizing
model performance. Fig. 6 shows the experimental results on four
datasets. In Fig. 6, we find that our model performance shows a
decline when we only consider the decayed short-term knowledge as
the initial knowledge state of the next session, i.e., a is set to 0. It
indicates that long-term knowledge can be propagated to the next
session. Similarly, our model performance is not optimal when we only
consider the long-term knowledge, i.e., a is set to 1. We conclude that
both the learners’ long-term and short-term knowledge states impact
their learning performance.

Overall, our model performs best as a grows to 0.3. After that, its
performance is relatively stable and not particularly sensitive to the
fusion of long- and short-term knowledge. Therefore, « is set to 0.3 to
fuse the learners’ knowledge states before it is propagated to the next
session.

The interval threshold setting for splitting sessions. Given the
sessions split by too large thresholds (e.g., 10 h) do not align with
learners’ short online sessions, as analyzed in Section 4.3, we run ELPKT
in the sessions split by small thresholds (i.e., # € {20,30,40,50}) to
illustrate the effects of thresholds on the model performance.

The experimental results in Table 8 indicate that ELPKT performs
better in sessions split by # € {20,30} than in those split by 6 € {40,50}.
ELPKT performs best in sessions split by § = 30 min in ASSIST2017 and
MOOC770738, while there are some minor fluctuations in ASSIST2012
and MOOC746997.

6.2.5. A case study: The knowledge state evolution

Finally, to answer the research questions RQ3, we visualize a
learner’s knowledge state evolution. We assess the learner’s knowledge
level following the approach of [13]. At time step ¢ of the pth session,
the learner’s level y7', on the knowledge concept c,, is calculated as
follows:

y[’)'”t = sigmoid(Wg[h;f, @©0]+b,) (20)

where b7, is the knowledge state related to KC c,,. 0 represents the zero
vector, whose dimension is equal to that of the exercise and difficulty
level in Eq. (18). W, and b, are trained parameters in Eq. (18).

To validate the proposed ELPKT in capturing knowledge state shifts
between sessions, we calculate the average difference in knowledge
state evolution as follows:

T-1| m m

. =1 |Ypse1 = Vpi
dlfim‘ra = )Tp_ 1 | (21)

Z?:l » = y’"T
difimer = ‘ 1’}~’ - ‘ (22)
where dif;,,., and dif;,, denote the average difference in knowl-

edge state evolution on the same KCs within and between sessions,
respectively. T' represents all time steps in sessions. y)', represents the
learner’s knowledge level on KC ¢, at time step ¢ of the pth session.
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Table 8
The average results of ELPKT running in the sessions split by different interval threshold 6.
ASSIST2012 ASSIST2017 MOOC746997 MOOC770738
Methods
AUC ACC RMSE AUC ACC RMSE AUC ACC RMSE AUC ACC RMSE
6=20 0.7852  0.7603  0.4050 0.8115 0.7481 0.4107 0.8165 0.7833  0.3903 0.8316  0.8623  0.3218
6=30 0.7844 0.7591 0.4059 0.8285 0.7620 0.4018 0.8138 0.7750 0.394 0.8357 0.8719 0.3106
0=40 0.7821  0.7535  0.4068  0.8211  0.7565  0.4054  0.8114 07741  0.3951  0.8340 0.8681  0.3155
6=50 0.7801 0.7502 0.4213 0.8037 0.7434 0.4141 0.8087 0.7692 0.3967 0.8326 0.8565 0.3254
Table 9
The details of the learner’s interactions in the 9th and 10th sessions.
Exercise € € e ey s L3 €7 g €9 €10 el 12 e 4 es €16 7 Gt
KC @ @ ® @ ® ©® ® @ @ @ @ ® ® ® ® @ @ @
Difficulty 5 8 4 2 1 4 5 4 4 2 3 1 6 2 5 5 3 3
Answer time (s) 136 249 10 28 4 313 142 20 28 4 15 5 21 6 19 35 30 25
Hint 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0
Attempt 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Exercise €1 €2 €3 €4 €5 € €7 €3 €9 €10|€11 €12 €13 €14 €15 €16 €17 €13
Session 9 9 9 9 9 9 9 9 9 9]10 10 10 10 10 10 10 10
Concept ®@ @ © @ @@ ® 6 @@ @ ©o|l®e & 6 6 6 @ @ © 0.8
Response X v v vV Y o x x x VIV Vv Vv Vv Vv x Vv ¥
@ 0.65 0.62 0.58 0.55 0.55 [[721][0.69 0.67 0.67 0.68 0.6
® 0.45 0.45 0.41 0.32 0.21 0.28 '
©) 0.63 0.63 0.62 0.63 0.64 0.6 0.58 0.59 0.59 0.61 0.59 0.59 0.6
>N 068 0.68 |0.79 0.82 0.81 0.82 0.4
® 0.65 0.65 0.65 0.66 O. 0.51 0.51 0.51 0.5 0.94 0.92 0.92
® 0.56 0.56 0.56 0.57 0.57 .61 0.59 0.6 0.61 0.6 0.61 0.61 0.62 0.2

®Addition and Subtraction Integers
@Addition and Subtraction Fractions

@Equation Solving More Than Two Steps
O®Finding Percents

®Multiplication and Division Integers
®Solving for a variable

Fig. 7. A learner’s knowledge state evolution in the 9th and 10th sessions.

We visualize an example from the ASSIST2012 dataset in Fig. 7,
which displays the learner’s knowledge state in the 9th and 10th
sessions traced by ELPKT. We also show the details of the learner’s
interactions in the 9th and 10th sessions in Table 9. From Fig. 7 and
Table 9, we have the following findings:

ELPKT can capture knowledge state shifts between sessions.
Knowledge state shifts between sessions denote that learners’ perfor-
mances on the same knowledge concepts may be different in adjacent
sessions. In Fig. 7, there is a significant shift in the learner’s per-
formances on KCs “®@” and “®” between the 9th and 10th sessions.
To validate whether our ELPKT can capture knowledge state shifts
between sessions, we calculate the average differences in knowledge
state evolution for “®” and “®” within and between sessions.

According to Egs. (21) and (22), the average difference of knowl-
edge state evolution for “®” within the 9th and 10th sessions is 0.06
and 0.09, while that between the two sessions is 0.13. Similarly, the
average difference of knowledge evolution for “®” within the 9th and
10th sessions is 0.02 and 0.07, while that between the two sessions is
0.3. It indicates that the knowledge states predicted by our ELPKT are
consistent with the learners’ responses within and between sessions.
Moreover, the average difference in knowledge state evolution between
sessions is greater than that within sessions, which validates our ELPKT
can capture the knowledge state shifts between sessions.

The knowledge retention in inter-session modeling is effective.
In Fig. 7, the learner’s responses to knowledge concepts “®” and “®”
are correct, and her knowledge level is always high in the adjacent
9th and 10th sessions. It indicates that the ELPKT model can consol-
idate well-mastered knowledge into long-term knowledge, making the
responses to well-mastered knowledge consistent in adjacent sessions.

ELPKT models fine-grained learning behavior effectively. ELPKT
models learners’ guesses and engagement by considering fine-grained
learning behaviors to assess their knowledge levels. The learner spent
249 s incorrectly answering exercise e,, with a difficulty level 8. ELPKT
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may perceive that the learner’s engagement on a difficult question
is helpful for knowledge growth. Therefore, the knowledge state on
“@” increases after solving e, in Fig. 7. The knowledge state will
significantly decrease if the learner’s behavior is deemed an obvious
guess. For example, the learner requests 4 system hints within 35 s on
solving e,c. ELPKT assumes that the learner guesses the answer, which
results in a significant decrease in knowledge “®”.

ELPKT can provide interpretability. ELPKT focuses on exercise
difficulty level and learners’ fine-grained learning behavior to measure
learners’ knowledge level, which provides interpretability for learners’
knowledge level and the predicted performance. For example, in the
10th session, despite answering exercise e;, correctly, the learner’s
knowledge level on “®” is almost unchanged. By checking the learner’s
answering recording in Table 9, we find that the learner spent only 6 s
on exercise ey, with a difficulty level of 2. ELPKT may perceive that
exercise e, is particularly easy, resulting in little knowledge growth.

ELPKT can simulate knowledge forgetting and decay within
and between sessions. As can be seen in Fig. 7, after interacting with
exercise eg and e, the knowledge levels on “®” and “@” gradually
decays over time. This indicates that ELPKT can gradually forget and
decay the knowledge that was not applied during learning.

6.2.6. Discussion

While ELPKT enables capturing the knowledge state shifts between
sessions and tracing learners’ knowledge state effectively, we highlight
several limitations that need to be considered. First, despite we set an
interval threshold for session splitting by comprehensively analyzing
the learning process and the hyperparameter experiments, it still has
room for improvement. The sessions split by our method are unified
based on all learning sequences, which may not satisfy personalized
learning. Second, we validate the effectiveness of offline inter-session
modeling through extensive experiments. Due to a lack of observable
offline data, we consider short- to long-term knowledge retention and
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short-term knowledge decay in inter-session modeling. However, due
to the diversity of learners’ offline learning, it may not fully capture
the knowledge state shifts between sessions when only considering
knowledge retention and decay in offline time.

7. Conclusion

In this paper, we propose a method of enhancing learning pro-
cess modeling for session-aware knowledge tracing, ELPKT, to effec-
tively trace learners’ knowledge state evolution in the learning process.
Specifically, we conduct in-depth data analysis to understand the learn-
ers’ learning process and their session-form learning pattern. Then, we
validate the knowledge state shifts between sessions from the knowl-
edge concept level through empirical study. Next, the ELPKT models
the learning process as intra-sessions and inter-sessions at the knowl-
edge concept level to track learners’ knowledge state across sessions.
Extensive experiments validate that the proposed ELPKT outperforms
the existing methods in tracing learners’ knowledge. Moreover, ELPKT
can capture the knowledge state shifts between sessions effectively
and provide interpretability for the predicted results. The method of
quantifying the difference of knowledge state evolution within and
between sessions proposed in this article can also be applied to mea-
sure users’ fine-grained interest evolution in several downstream tasks,
including learning resource recommendations or other interest-based
recommenders.

In future work, several directions can be considered to enhance
the learning process modeling. Firstly, developing an adaptive method
to split sessions that satisfy personalized learning will be meaningful.
Secondly, inspired by the benefits of uniform sequences in sequential
recommendation [39], it will be interesting to explore data augmenta-
tion techniques to generate learning records for offline times. Lastly,
to provide more valuable insights to learners and educators, it will be
promising to explore the optimal learning patterns based on learners’
learning time allocation.

CRediT authorship contribution statement

Chunli Huang: Writing — original draft, Software, Methodology,
Conceptualization. Wenjun Jiang: Writing — original draft, Software,
Methodology, Conceptualization. Kenli Li: Investigation, Formal anal-
ysis. Jie Wu: Writing — review & editing. Ji Zhang: Data curation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported by the National Natural Science Founda-
tion of China (Grant No. 62172149) and the National Key R&D Program
of China (Grant No. 2022ZD0118302).

Data availability

Data will be made available on request.

13

Knowledge-Based Systems 309 (2025) 112740

References

[1] S. Shen, Q. Liu, Z. Huang, Y. Zheng, M. Yin, M. Wang, E. Chen, A survey
of knowledge tracing: Models, variants, and applications, [EEE Trans. Learn.
Technol. (2024) 1-22.
G. Abdelrahman, Q. Wang, B. Nunes, Knowledge tracing: A survey, ACM Comput.
Surv. 55 (11) (2023).
S. Shen, Z. Huang, Q. Liu, Y. Su, S. Wang, E. Chen, Assessing student’s dynamic
knowledge state by exploring the question difficulty effect, in: Proceedings of
the 45th International ACM SIGIR Conference on Research and Development in
Information Retrieval, 2022, pp. 427-437.
S. Minn, J.-J. Vie, K. Takeuchi, H. Kashima, F. Zhu, Interpretable knowledge
tracing: Simple and efficient student modeling with causal relations, in: Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol. 36, (11) 2022,
pp. 12810-12818.
S. Pandey, J. Srivastava, RKT: Relation-aware self-attention for knowledge
tracing, in: Proceedings of the 29th ACM International Conference on Information
& Knowledge Management, CIKM 20, ACM, New York, NY, USA, 2020, pp.
1205-1214.
J. Chen, Z. Liu, S. Huang, Q. Liu, W. Luo, Improving interpretability of deep
sequential knowledge tracing models with question-centric cognitive representa-
tions, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37,
(12) 2023, pp. 14196-14204.
T. Long, Y. Liu, J. Shen, W. Zhang, Y. Yu, Tracing knowledge state with individ-
ual cognition and acquisition estimation, in: Proceedings of the 44th International
ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’21, ACM, 2021, pp. 173-182.
C. Wang, S. Sahebi, Continuous personalized knowledge tracing: Modeling
long-term learning in online environments, in: Proceedings of the 32nd ACM
International Conference on Information and Knowledge Management, CIKM 23,
ACM, New York, NY, USA, 2023, pp. 2616-2625.
K. Nagatani, Q. Zhang, M. Sato, Y.-Y. Chen, F. Chen, T. Ohkuma, Augmenting
knowledge tracing by considering forgetting behavior, in: The World Wide Web
Conference, WWW ’19, ACM, New York, NY, USA, 2019, pp. 3101-3107.
A. Ghosh, N. Heffernan, A.S. Lan, Context-aware attentive knowledge tracing, in:
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD ’20, Association for Computing Machinery, 2020,
pp. 2330-2339.
S. Shen, Q. Liu, E. Chen, Z. Huang, W. Huang, Y. Yin, Y. Su, S. Wang, Learning
process-consistent knowledge tracing, in: Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, 2021, pp. 1452-1460.
C. Wang, W. Ma, M. Zhang, C. Lv, F. Wan, H. Lin, T. Tang, Y. Liu, S. Ma,
Temporal cross-effects in knowledge tracing, in: Proceedings of the 14th ACM
International Conference on Web Search and Data Mining, WSDM ’21, ACM,
New York, NY, USA, 2021, pp. 517-525.
B. Xu, Z. Huang, J. Liu, S. Shen, Q. Liu, E. Chen, J. Wu, S. Wang, Learning
behavior-oriented knowledge tracing, in: Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, 2023, pp. 2789-2800.
M. Zhang, X. Zhu, C. Zhang, W. Qian, F. Pan, H. Zhao, Counterfactual monotonic
knowledge tracing for assessing students’ dynamic mastery of knowledge con-
cepts, in: Proceedings of the 32nd ACM International Conference on Information
and Knowledge Management, CIKM ’23, 2023, pp. 3236-3246.
Y. Yin, L. Dai, Z. Huang, S. Shen, F. Wang, Q. Liu, E. Chen, X. Li, Tracing knowl-
edge instead of patterns: Stable knowledge tracing with diagnostic transformer,
in: Proceedings of the ACM Web Conference 2023, WWW ’23, ACM, New York,
NY, USA, 2023, pp. 855-864.
S. Shen, E. Chen, B. Xu, Q. Liu, Z. Huang, L. Zhu, Y. Su, Quiz-based knowledge
tracing, 2023, arXiv preprint arXiv:2304.02413.
F. Ke, W. Wang, W. Tan, L. Du, Y. Jin, Y. Huang, H. Yin, Hitskt: A hierarchical
transformer model for session-aware knowledge tracing, Knowl.-Based Syst. 284
(2024) 111300.
C. Piech, J. Bassen, J. Huang, S. Ganguli, M. Sahami, L.J. Guibas, J.
Sohl-Dickstein, Deep knowledge tracing, Adv. Neural Inf. Process. Syst. 28
(2015).
C.-K. Yeung, D.-Y. Yeung, Addressing two problems in deep knowledge tracing
via prediction-consistent regularization, in: Proceedings of the Fifth Annual ACM
Conference on Learning at Scale, in: L@S ’18, ACM, New York, NY, USA, 2018.
J. Zhang, X. Shi, I. King, D.-Y. Yeung, Dynamic key-value memory networks
for knowledge tracing, in: Proceedings of the 26th International Conference on
World Wide Web, WWW ’17, International World Wide Web Conferences Steering
Committee, 2017, pp. 765-774.
G. Abdelrahman, Q. Wang, Knowledge tracing with sequential key-value memory
networks, in: Proceedings of the 42nd International ACM SIGIR Conference on
Research and Development in Information Retrieval, 2019, pp. 175-184.
S. Pandey, G. Karypis, A self-attentive model for knowledge tracing, in: 12th
International Conference on Educational Data Mining, EDM 2019, International
Educational Data Mining Society, 2019, pp. 384-389.
L. Zhang, X. Xiong, S. Zhao, A. Botelho, N.T. Heffernan, Incorporating rich
features into deep knowledge tracing, in: Proceedings of the Fourth, 2017 ACM
Conference on Learning @ Scale, in: L@S ’17, ACM, New York, NY, USA, 2017,
pp. 169-172.

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]


http://refhub.elsevier.com/S0950-7051(24)01374-1/sb1
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb1
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb1
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb1
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb1
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb2
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb2
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb2
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb3
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb3
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb3
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb3
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb3
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb3
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb3
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb4
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb4
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb4
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb4
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb4
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb4
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb4
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb5
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb5
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb5
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb5
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb5
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb5
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb5
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb6
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb6
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb6
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb6
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb6
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb6
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb6
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb7
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb7
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb7
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb7
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb7
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb7
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb7
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb8
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb8
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb8
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb8
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb8
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb8
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb8
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb9
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb9
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb9
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb9
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb9
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb10
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb10
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb10
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb10
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb10
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb10
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb10
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb11
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb11
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb11
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb11
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb11
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb12
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb12
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb12
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb12
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb12
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb12
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb12
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb13
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb13
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb13
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb13
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb13
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb14
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb14
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb14
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb14
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb14
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb14
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb14
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb15
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb15
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb15
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb15
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb15
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb15
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb15
http://arxiv.org/abs/2304.02413
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb17
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb17
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb17
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb17
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb17
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb18
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb18
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb18
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb18
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb18
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb19
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb19
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb19
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb19
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb19
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb20
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb20
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb20
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb20
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb20
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb20
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb20
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb21
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb21
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb21
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb21
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb21
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb22
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb22
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb22
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb22
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb22
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb23
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb23
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb23
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb23
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb23
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb23
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb23

C. Huang et al.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Y. Choi, Y. Lee, J. Cho, J. Baek, B. Kim, Y. Cha, D. Shin, C. Bae, J. Heo, Towards
an appropriate query, key, and value computation for knowledge tracing, in:
Proceedings of the Seventh ACM Conference on Learning @ Scale, in: L@S 20,
ACM, 2020, pp. 341-344.

S. Yang, X. Yu, Y. Tian, X. Yan, H. Ma, X. Zhang, Evolutionary neural architecture
search for transformer in knowledge tracing, Adv. Neural Inf. Process. Syst. 36
(2024).

M.J. Anzanello, F.S. Fogliatto, Learning curve models and applications: Literature
review and research directions, Int. J. Ind. Ergon. 41 (5) (2011) 573-583.

L. Averell, A. Heathcote, The form of the forgetting curve and the fate of
memories, J. Math. Psychol. 55 (1) (2011) 25-35.

H. Ebbinghaus, Memory: A contribution to experimental psychology, Ann.
Neurosci. 20 (4) (2013) 155.

Z. Huang, Q. Liu, Y. Chen, L. Wu, K. Xiao, E. Chen, H. Ma, G. Hu, Learning
or forgetting? A dynamic approach for tracking the knowledge proficiency of
students, ACM Trans. Inf. Syst. 38 (2) (2020) 1-33.

D. Shin, Y. Shim, H. Yu, S. Lee, B. Kim, Y. Choi, SAINT+: Integrating temporal
features for EdNet correctness prediction, in: LAK21: 11th International Learning
Analytics and Knowledge Conference, in: LAK21, ACM, 2021, pp. 490-496.

G. Abdelrahman, Q. Wang, Deep graph memory networks for forgetting-robust
knowledge tracing, IEEE Trans. Knowl. Data Eng. 35 (8) (2023) 7844-7855.
M. Chen, Q. Guan, Y. He, Z. He, L. Fang, W. Luo, Knowledge tracing model with
learning and forgetting behavior, in: Proceedings of the 31st ACM International
Conference on Information & Knowledge Management, CIKM 22, ACM, 2022,
pp. 3863-3867.

Y. Im, E. Choi, H. Kook, J. Lee, Forgetting-aware linear bias for attentive
knowledge tracing, in: Proceedings of the 32nd ACM International Conference on
Information and Knowledge Management, CIKM ’23, ACM, 2023, pp. 3958-3962.
J. Cui, Z. Chen, A. Zhou, J. Wang, W. Zhang, Fine-grained interaction modeling
with multi-relational transformer for knowledge tracing, ACM Trans. Inf. Syst.
41 (4) (2023) 1-26.

L. Wei, B. Li, Y. Li, Y. Zhu, Time interval aware self-attention approach for
knowledge tracing, Comput. Electr. Eng. 102 (2022) 108179.

M. Zhang, X. Zhu, C. Zhang, F. Pan, W. Qian, H. Zhao, No length left
behind: Enhancing knowledge tracing for modeling sequences of excessive or
insufficient lengths, in: Proceedings of the 32nd ACM International Conference on
Information and Knowledge Management, CIKM ’23, ACM, 2023, pp. 3226-3235.

14

[37]

[38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

[46]

[47]

Knowledge-Based Systems 309 (2025) 112740

M. Zhang, X. Zhu, C. Zhang, Y. Ji, F. Pan, C. Yin, Multi-factors aware dual-
attentional knowledge tracing, in: Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, CIKM ’21, ACM, 2021,
pp. 2588-2597.

J. Yu, M. Lu, Q. Zhong, Z. Yao, S. Tu, Z. Liao, X. Li, M. Li, L. Hou, H.-T.
Zheng, J. Li, J. Tang, MoocRadar: A fine-grained and multi-aspect knowledge
repository for improving cognitive student modeling in MOOCs, in: Proceedings
of the 46th International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR 23, ACM, 2023, pp. 2924-2934.

Y. Dang, E. Yang, G. Guo, L. Jiang, X. Wang, X. Xu, Q. Sun, H. Liu, Uniform
sequence better: Time interval aware data augmentation for sequential recom-
mendation, in: Proceedings of the AAAI Conference on Artificial Intelligence, vol.
37, (4) 2023, pp. 4225-4232.

G.A. Miller, The magical number seven, plus or minus two: Some limits on our
capacity for processing information, Psychol. Rev. 63 (2) (1956) 81.

C.H. McGrath, B. Guerin, E. Harte, M. Frearson, C. Manville, Learning Gain in
Higher Education, RAND Corporation, Santa Monica, CA, 2015.

R.E. Slavin, Educational Psychology: Theory and Practice, Pearson, 2018.

K.B. Lyle, C.R. Bego, R.F. Hopkins, J.L. Hieb, P.A. Ralston, How the amount
and spacing of retrieval practice affect the short-and long-term retention of
mathematics knowledge, Educ. Psychol. Rev. 32 (2020) 277-295.

J.D. Karpicke, H.L. Roediger, Repeated retrieval during learning is the key to
long-term retention, J. Mem. Lang. 57 (2) (2007) 151-162, http://dx.doi.org/
10.1016/j.jm1.2006.09.004, URL https://www.sciencedirect.com/science/article/
pii/S0749596X06001367.

G. Radvansky, Human Memory (4th ed.), fourth ed., Routledge, New York, NY,
2021.

X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward
neural networks, in: Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics, JMLR Workshop and Conference
Proceedings, 2010, pp. 249-256.

D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014, arXiv
preprint arXiv:1412.6980.


http://refhub.elsevier.com/S0950-7051(24)01374-1/sb24
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb24
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb24
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb24
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb24
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb24
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb24
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb25
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb25
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb25
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb25
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb25
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb26
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb26
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb26
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb27
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb27
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb27
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb28
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb28
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb28
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb29
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb29
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb29
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb29
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb29
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb30
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb30
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb30
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb30
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb30
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb31
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb31
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb31
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb32
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb32
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb32
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb32
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb32
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb32
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb32
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb33
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb33
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb33
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb33
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb33
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb34
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb34
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb34
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb34
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb34
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb35
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb35
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb35
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb36
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb36
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb36
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb36
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb36
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb36
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb36
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb37
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb37
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb37
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb37
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb37
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb37
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb37
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb38
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb38
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb38
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb38
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb38
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb38
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb38
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb38
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb38
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb39
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb39
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb39
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb39
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb39
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb39
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb39
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb40
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb40
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb40
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb41
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb41
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb41
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb42
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb43
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb43
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb43
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb43
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb43
http://dx.doi.org/10.1016/j.jml.2006.09.004
http://dx.doi.org/10.1016/j.jml.2006.09.004
http://dx.doi.org/10.1016/j.jml.2006.09.004
https://www.sciencedirect.com/science/article/pii/S0749596X06001367
https://www.sciencedirect.com/science/article/pii/S0749596X06001367
https://www.sciencedirect.com/science/article/pii/S0749596X06001367
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb45
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb45
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb45
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb46
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb46
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb46
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb46
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb46
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb46
http://refhub.elsevier.com/S0950-7051(24)01374-1/sb46
http://arxiv.org/abs/1412.6980

	Enhancing learning process modeling for session-aware knowledge tracing
	Introduction
	Related work
	KT Works Not Considering Temporal Effects
	KT Works Considering Temporal Effects
	KT Works Modeling Temporal Effects in a Unified Way
	Session-aware Knowledge Tracing


	Problem Formulation
	Term Definition
	Problem Definition

	Data Analysis and Processing
	Preliminary
	Dataset
	Correlation Analysis Method

	Data Analysis
	Interactions Uniformity
	Session Duration and Offline Time Statistics

	Data Processing
	Empirical Study: Knowledge States Shifts Between Sessions

	Model
	Embedding
	Modeling Intra-session
	Knowledge Acquisition Modeling
	Knowledge Forgetting Modeling
	Knowledge Update Modeling

	Modeling Inter-session
	Short-to-Long Knowledge Retention
	Short-term Knowledge Decay

	Performance Prediction

	Experiment
	Experimental Setup
	Training Details
	Evaluation

	Experimental Results And Discussion
	Baselines
	Performance Prediction
	Ablation Studies
	Parameter Sensitivity Analysis
	A Case Study: The Knowledge State Evolution
	Discussion


	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


